Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance

Author:

Morales Dulce M,Risch MarcelORCID

Abstract

Abstract Discovery of electrocatalytic materials for high-performance energy conversion and storage applications relies on the adequate characterization of their intrinsic activity, which is currently hindered by the dearth of a protocol for consistent and precise determination of double layer capacitance (C DL). Herein, we propose a seven-step method that aims to determine C DL reliably by scan rate-dependent cyclic voltammetry considering aspects that strongly influence the outcome of the analysis, including (a) selection of a suitable measuring window, (b) the uncompensated resistance, (c) optimization of measuring settings, (d) data acquisition, (e) selection of data suitable for analysis, (f) extraction of the desired information, and (g) validation of the results. To illustrate the proposed method, two systems were studied: a resistor–capacitor electric circuit, and a glassy carbon disk in an electrochemical cell. With these studies, it is demonstrated that when any of the mentioned steps of the procedure are neglected, substantial deviations of the results are observed with misestimations as large as 61% in the case of the investigated electrochemical system. Moreover, we propose allometric regression as a more suitable model than linear regression for the determination of C DL for both the ideal and the non-ideal systems investigated. We stress the importance of assessing the accuracy of not only highly specialized electrochemical methods, but also of those that are well-known and commonly used as it is the case of the voltammetric methods. The procedure proposed herein is not limited to the determination of C DL, but can be effectively applied to any other analysis that aims to deliver quantitative results via voltammetric methods, which is crucial for the study of kinetic and diffusion phenomena in electrochemical systems.

Funder

H2020 European Research Council

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3