Effectiveness of poly(methyl methacrylate) spray encapsulation for perovskite solar cells

Author:

Hughes DeclanORCID,Spence Michael,Thomas Suzanne K,Apanavicius RokasORCID,Griffiths Chris,Carnie Matthew JORCID,Tsoi Wing CORCID

Abstract

Abstract For commercial applications, Perovskite Solar Cells (PSCs) need to be well encapsulated to improve long term stability. The most common method, glass-glass encapsulation, uses edge sealant materials to encapsulate the device between sheets of glass. Glass-Glass encapsulation, while providing provide adequate protection from the ambient environment, limits the use of flexible substrates for thin film solar cells due to its rigidity. Additionally, the added weight of glass encapsulation reduces the specific power (W kg−1) of PSCs, which is an important factor when designing solar cells for aerospace applications. Here we demonstrate that commercially available acrylic spray encapsulation offers efficient and robust stability for PSCs. It is shown that applying the encapsulation via this method does not degrade the PSCs, unlike other literature and glass-glass encapsulation methods. Additionaly, it is shown that 1 coat of acrylic spray encapsulation has an effective thickness of ∼1.77 µm and a weight of ∼6 mg. For stability measurements, PSCs with an acrylic coating show a 4% increase in performance after ∼730 h under dark storage conditions and retain 88% of their initial power conversion efficiency after 288 h under 85% relative humidity 25 °C. We anticipate our assay to be a starting point for further studies into spray encapsulation materials and methods not just for terrestial applications, but for aerospace applications as well.

Funder

European Regional Development Fund

Airbus UK

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3