Comprehensive review and future perspectives: 3D printing technology for all types of solid oxide cells

Author:

Kim Chanho,Jang InyoungORCID

Abstract

Abstract As the urgency to address global warming increases, the demand for clean energy generation systems that can mitigate greenhouse gases is intensifying. Solid oxide cells (SOCs) have emerged as a key technology for clean energy conversion, offering the benefits of power generation without submission of any pollutants including greenhouse gases. As the consumption of energy rises, the electrochemical performance of SOCs must be enhanced to meet the future energy demand. With the advent of 3D printing technology, the fabrication of SOCs has undergone a transformative shift, enabling precise structural control beyond the capabilities of traditional ceramic processes. This technology facilitates the creation of complex geometries, optimising functionality through structural innovation and maximising the electrochemical performance by enhancing reaction sites. Our review covers the brief outlook and the profound impact of 3D printing technology on SOC fabrication, highlighting its role in surpassing the structural constraints of conventional SOCs and paving the way for advanced applications like metal supported SOCs and integrated stack modules. Through the review, it is evident that continued, in-depth research into 3D printing for SOCs is crucial for maximising their role as a sustainable energy resource in the future.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3