Thin film absorbers for tandem solar cells: an industrial perspective

Author:

Yu Ming L,Los Andrei,Xiong GangORCID

Abstract

Abstract Tandem solar cells have received a lot attention from academia and industrial researchers as the potential next-generation PV technology, with higher efficiency above the limit of single-junction solar cells. Thin-film/thin-film (TF/TF) tandems are attractive due to similar toolset and processes producing the top and bottom cells, which improve scalability and promote cost reduction compared to TF/wafer tandem technologies. TF/TF/tandems additionally offer more absorber bandgap flexibility that promotes photovoltaic conversion efficiency optimization. Many materials not suitable for single junction solar cells can be explored as tandem top or bottom cells. To assess the practical efficiency potential of tandem solar cells limited by non-ideal material and device quality, we present a Shockley–Queisser-like efficiency calculation for tandem devices consisting of non-ideal top and bottom cells and with a range of absorber band gaps. The non-ideality is introduced through an experimentally measurable external radiative quantum efficiency (ERE). We find that a range of top and bottom cell band gaps enabling the highest tandem efficiency shifts from the ideal Shockley–Queisser case and depends on the top and bottom cell ERE. Furthermore, tandem cell efficiency greater than 37% can be achieved with very modest top/bottom cell EREs, for example of only 0.008%/0.5% which is typical for CdTe/CIS cells. Our results indicate that high efficiency tandem solar cells have good probability to be manufactured at high volume within a foreseeable future, despite non-ideal material and device quality due to early stages of development or constraint by manufacturing requirements. Finally, we review a number of mature and emerging thin film absorber material candidates for tandem applications. We discuss properties of these materials and the corresponding device performance as well as the associated technological challenges. We concludes on the promise of each of these materials for tandem applications that is expected to provide guidance to the photovoltaic research community.

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Reference58 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3