Understanding variations of thermal hysteresis in barocaloric plastic crystal neopentyl glycol using correlative microscopy and calorimetry

Author:

Rendell-Bhatti FredericORCID,Boldrin DavidORCID,Dilshad Melony,Moya Xavier,MacLaren Donald A

Abstract

Abstract Plastic crystals (PCs) exhibit solid–solid order-disorder first-order phase transitions that are accompanied by large correlated thermal and volume changes. These characteristics make PCs promising barocaloric solid-state working bodies for heating and cooling applications. However, understanding the variation of transition temperatures and thermal hysteresis in PCs with cycling is critical if these materials are to replace traditional gaseous refrigerants. Here, for the archetypal barocaloric PC neopentyl glycol (NPG), we correlate microstructure obtained from scanning electron microscopy with local and total thermal changes at the phase transition from infra-red imaging and calorimetry, respectively. We outline an evolution in microstructure as NPG recrystallises during repeated thermal cycling through its solid–solid phase transition. The observed microstructural changes are correlated with spatially inhomogeneous heat transfer, yielding direct insight into the kinetics of the phase transition. Our results suggest that the interplay of these processes affects the undesirable thermal hysteresis and the nature of the kinetic steady-state microstructures that are stabilised during cycling between the ordered and disordered phases. These observations have implications for using NPG and other PCs as technologically relevant barocaloric materials and suggest ways in which the hysteresis in these types of materials may be modified.

Funder

EPSRC

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3