Modification of TiO2 with metal chalcogenide nanoclusters for hydrogen evolution

Author:

Rhatigan StephenORCID,Niemitz Lorenzo,Nolan MichaelORCID

Abstract

Abstract Using density functional theory, corrected for on-site Coulomb interactions (DFT + U), we have investigated surface modification of TiO2 with metal chalcogenide nanoclusters for hydrogen evolution. The nanoclusters have composition M4X4 (M = Sn, Zn; X = S, Se) and are adsorbed at the rutile (110) surface. The nanoclusters adsorb exothermically, with adsorption energies in the range −2.8 eV to −2.5 eV. Computed density of states (DOS) plots show that cluster-derived states extend into the band-gap of the rutile support, which indicates that modification produces a redshift in light absorption. After modification, photoexcited electrons and holes are separated onto surface and cluster sites, respectively. The free energy of H adsorption is used to assess the performance of metal chalcogenide modified TiO2 as a catalyst for the hydrogen evolution reaction (HER). Adsorption of H at nanocluster (S, Se) and surface (O) sites is considered, together with the effect of H coverage. Adsorption free energies at cluster sites in the range −0.15 eV to 0.15 eV are considered to be favourable for HER. The results of this analysis indicate that the sulphide modifiers are more active towards HER than the selenide modifiers and exhibit hydrogen adsorption free energies in the active range, for most coverages. Conversely, the adsorption free energies at the selenide nanoclusters are only in the active range at low H coverages. Our results indicate that surface modification with small, dispersed nanoclusters of appropriately selected materials can enhance the photocatalytic activity of TiO2 for HER applications.

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3