High throughput discovery of enhanced visible photoactivity in Fe–Cr vanadate solar fuels photoanodes

Author:

Zhou LanORCID,Guevarra DanORCID,Gregoire John MORCID

Abstract

Abstract Metal oxide solar absorbers are well suited for photoelectrochemical applications where requisite properties include stability in highly oxidizing environments, in addition to solar energy conversion. Metal vanadates are of particular interest due to their relatively low band gap energies compared to traditional, wide-gap photocatalysts. Concerted efforts on BiVO4-based photoanodes have revealed multiple avenues for improving the solar conversion efficiencies for photon energies above 2.5 eV but have not addressed the ultimate performance limitations from the undesirably high band gap energy. Fe and Cr vanadates have a lower band gap and thus a higher potential solar conversion efficiency, although to-date the absorbed 2–2.5 eV photons are not effectively converted to the desired anodic photocurrent. By using combinatorial synthesis and high throughput screening, we demonstrate that cation substitutions with the monoclinic MVO4 phase (M = Cr, Fe) improves the utilization of photons in this energy range. Given the portfolio of photoanode improvement techniques available, we suggest optimization of (Cr0.5Fe0.5)VO4-based photoanodes as a promising path for enable solar fuel technologies.

Funder

the US Department of Energy, Office of Science, Office of Basic Energy Sciences

the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3