Abstract
Abstract
Metal oxide solar absorbers are well suited for photoelectrochemical applications where requisite properties include stability in highly oxidizing environments, in addition to solar energy conversion. Metal vanadates are of particular interest due to their relatively low band gap energies compared to traditional, wide-gap photocatalysts. Concerted efforts on BiVO4-based photoanodes have revealed multiple avenues for improving the solar conversion efficiencies for photon energies above 2.5 eV but have not addressed the ultimate performance limitations from the undesirably high band gap energy. Fe and Cr vanadates have a lower band gap and thus a higher potential solar conversion efficiency, although to-date the absorbed 2–2.5 eV photons are not effectively converted to the desired anodic photocurrent. By using combinatorial synthesis and high throughput screening, we demonstrate that cation substitutions with the monoclinic MVO4 phase (M = Cr, Fe) improves the utilization of photons in this energy range. Given the portfolio of photoanode improvement techniques available, we suggest optimization of (Cr0.5Fe0.5)VO4-based photoanodes as a promising path for enable solar fuel technologies.
Funder
the US Department of Energy, Office of Science, Office of Basic Energy Sciences
the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
Subject
Materials Chemistry,General Energy,Materials Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献