Using concentration gradients to examine the effects of Al, Ga and Sn additions on the low-activation VCrMnFe system

Author:

Carruthers A W,Shahmir H,Rigby MORCID,Gandy A S,Pickering E JORCID

Abstract

Abstract A critical design criterion for future fusion reactor components is low activation. The equiatomic multi-principal element alloy VCrMnFe is comprised solely of low activation elements and forms a single-phase solid solution at temperatures over 1000 °C. However, at lower temperatures it forms detrimental sigma phase. In this work, compositional gradients of Ga, Sn or Al were induced in VCrMnFe using only a furnace to investigate their effect on intermetallic formation. By examining how the microstructure changed across a region with varying composition, phase stability limits could be assessed. For example, all three elements were found to prevent sigma phase from forming within the alloy when they were present at relatively low concentrations (2–5 at%). Al was found to be the most promising addition (in terms of not causing embrittlement), and the approach used enabled the characterisation of the VCrMnFe–Al pseudo binary phase diagram up to 50 at% Al after heat treatment of 800 °C/240 h followed by ageing at 600 °C/240 h, with numerous ordered phases found using electron diffraction. The level of Al addition required to suppress the sigma phase has been identified more precisely, which will be useful for future alloy development work.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3