Enhancing reversible Na-ion intercalation by introducing K-ions into layered vanadyl phosphate for sodium-ion battery cathodes

Author:

Wei Runzhe,Lu Yi,Ren Wanjun,Han Yupei,Vijaya Kumar Saroja Ajay Piriya,Xia Xueming,He Pan,Nason Charlie A F,Sun Zhixin,Darr Jawwad A,Luo Jiayan,Zhou MinORCID,Xu YangORCID

Abstract

Abstract Vanadium-based phosphates are being extensively studied as an important family of sodium-ion battery (SIB) cathodes. Among many compositions, NaVOPO4 is considered because of various polymorphs and the high redox potential of V4+/5+. However, due to relatively poor intrinsic kinetics and electronic conductivity, approaches such as nanostructuring and carbon composites are commonly used to avoid fast performance degradation. Being different from mainstream approaches, this work utilizes the knowledge gained from potassium-ion batteries (PIBs) and applies layered KVOPO4, a PIB cathode material, as a SIB cathode material. The results demonstrate that KVOPO4 experiences an electrochemical K+-Na+ exchange during the initial cycle and a Na-dominated (de)intercalation process in the following cycles. The initial exchange results in a small amount of K+ (∼0.1 K per formula) remaining in the interlayer space and owing to the larger size of K+ than Na+, the residual K+ effectively acts as ‘pillars’ to expand interlayer spacing and facilitates the Na (de)intercalation, leading to enhanced reversible Na storage and diffusion kinetics of KVOPO4 compared to its Na counterpart NaVOPO4. KVOPO4 delivers an initial discharge capacity of 120 mAh g−1 (90% of the theoretical capacity) at 10 mA g−1 and retains 88% capacity after 150 cycles. It also delivers 52 mAh g−1 at 1 A g−1 and 91% capacity retention after 1000 cycles at 100 mA g−1, completely outperforming NaVOPO4.

Funder

Engineering and Physical Sciences Research Council

Leverhulme Trust

Royal Society

Science and Technology Facilities Council Batteries Network

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3