Understanding water dynamics in operating fuel cells by operando neutron tomography: investigation of different flow field designs

Author:

Hack JenniferORCID,Ziesche Ralf FORCID,Fransson Matilda,Suter Theo,Helfen Lukas,Couture Cyrille,Kardjilov Nikolay,Tengattini Alessandro,Shearing Paul,Brett Dan

Abstract

Abstract Water management plays a key role in ensuring optimum polymer electrolyte fuel cell (PEFC) performance, and flow field design can influence the ability of a cell to balance maintaining hydration, whilst avoiding flooding and cell failure. This work deepens the understanding of water evolution in different PEFC flow channel designs, namely single serpentine (SS), double serpentine (DS) and parallel, using our novel high-speed neutron computed tomography method. We developed our previously-reported method by introducing continuous cell rotation, enabling 18 s per tomogram during 1 h holds at 300, 400 and 500 mA cm−2. The volume of water evolved in the cathode, membrane electrode assembly and anode was quantified, and key mechanisms for water droplet formation in the different flow channel designs were elucidated. The parallel flow field design had the poorest water management, with 47% of the cathode flow channel becoming filled after 1 h at 400 mA cm−2. This significant flooding blocked reactant sites and contributed to unstable cell performance and, ultimately, cell failure at higher current densities. The SS cell displayed the best water management, with only 11% of the cathode channel filled with water after 1 h at 500 mA cm−2, compared with 28% of the DS cathode channel. 3D visualisation and analysis of droplet behaviour elucidated how water ‘slugs’ in the SS were removed in the gas stream, whereas three of the four parallel cathode flow channels became entirely filled with water plugs, blocking gas flow and exacerbating cell flooding. The new insights gained here are expected to extend to novel flow field designs and image-based models, with the use of operando neutron CT demonstrated as a powerful technique for both visualising and quantifying water management in operating PEFCs, as well as deepening the knowledge of droplet behaviour in different flow field types.

Funder

Royal Academy of Engineering

Engineering and Physical Sciences Research Council

Faraday Institution

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3