Piezoelectric stick-slip actuator integrated with ultrasonic vibrator for improving comprehensive output performance

Author:

Yang Shitong,Li Yuelong,Qiao Guangda,Ning Peng,Lu XiaohuiORCID,Cheng TinghaiORCID

Abstract

Abstract In this paper, a novel compact piezoelectric stick-slip actuator integrated with ultrasonic vibrator based on ultrasonic anti-friction effect is proposed. Based on inverse piezoelectric effect, the piezoelectric stack generates the axial vibration under the excitation of asymmetric sawtooth wave, the ultrasonic vibrator is composed of a brass block and four piezoelectric plates, which is used to excite the ultrasonic longitudinal vibration mode in the fast deformation phase of piezoelectric stack. Due to ultrasonic anti-friction effect, the backward displacement of the actuator is effectively suppressed, and the bidirectional comprehensive output performance is improved. The prototype is fabricated and the operating principle of hybrid excitation is introduced, then the frequency of the first-order longitudinal vibration mode is explored by finite element analysis and impedance test, and the systematic experimental test is conducted. The test results show that when the sawtooth frequency is 300 Hz, comparing with the traditional sawtooth excitation mode, the proposed hybrid excitation mode can improve the velocities of the forward and backward directions by 30% and 26.7%, and the bidirectional maximum vertical mass loads are increased by 44.4% and 50%. This work provides a design concept that uses ultrasonic vibrator to improve the bidirectional comprehensive output performance of the piezoelectric stick-slip actuator.

Funder

Science and Technology Development Plan of Jilin Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3