Soft electroadhesive grippers with variable stiffness and deflection motion capabilities

Author:

Xiang ChaoqunORCID,Li Zhiwei,Luo Xuan,Huang Cheng,Guan Yisheng

Abstract

Abstract Soft gripper robots provide superior safety, adaptability, and compliance compared to rigid robots. However, soft grippers must address inadequate stiffness and interference resistance. Soft pneumatic electroadhesion (EA) grippers with variable stiffness are potential options for addressing these difficulties. In this paper, we present a soft bionic gripper (SOBG) that resembles human finger movements, such as bending and deflection, employing pneumatic actuation, and whose stiffness is effectively decoupled from its position through a layer jamming-induced variable stiffness structure. By applying electroadhesive forces, the SOBG can perform complex motion tasks that would typically require a wrist joint, making them simpler to perform than with conventional flexible grippers. In addition, the SOBG can perform one-finger object manipulation to grasp flat, concave, and convex objects. To show the potential for more complex robotic applications, we evaluated each function independently by presenting a demonstration of cap-screwing, a material handling system, and an anti-interference research. The SOBG concept and solution proposed in this study may pave the way for the easy integration of EA into soft robotic systems and promote the wider use of EA technology.

Funder

Natural Science Foundation of Guangdong Province

the “Hundred Young Talents Program” scientific research project of Guangdong University of Technology

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3