A magnetically controlled microstructured surface for three-dimensional droplet manipulation

Author:

Qin Hao,Peng Xianyu,Ji Jiaxin,Li JingORCID

Abstract

Abstract The smart manipulation of droplets has received widespread attention due to its potential applications in many fields. However, it is still challenging to realize robust multidimensional, versatile liquid manipulation using magnetically responsive surfaces. Here, a magnetically controlled surface with a dense array of cone-shaped microstructures is developed by the spray self-assembly method using soft nontoxic materials. The effects of the spray volume and material concentrations on the surface morphology and wettability are systematically investigated. The wettability and adhesion properties of the developed surface can be reversibly switched in the presence of an on/off magnetic field. In situ observation indicated that the driving force acted on the droplet is derived from localized deformation of the microstructures. Moreover, theoretical models of droplet manipulation are proposed to demonstrate the underlying mechanism. Under the actuation of the moving magnetic field, the surface can transport droplets of 1–14 μl in the vertical direction, and the modified superhydrophobic surface can transport droplets of 3–30 μl in the horizontal direction and achieve against-gravity droplet climbing with a volume of 10 μl at a climbing angle of 25°. The environmentally friendly and facilely manufacturable surface presents promising applications in liquid microreactors and the transportation of mixed fluids in biological and chemical research.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Shandong Provincial Natural Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3