Energy-based modeling of rate-independent hysteresis and viscoelastic effects in dielectric elastomer actuators

Author:

Rizzello GianlucaORCID

Abstract

Abstract Dielectric elastomer (DE) transducers are known to exhibit a rate-dependent hysteresis in their force-displacement response, which is commonly attributed to the viscoelastic behavior of elastomer materials and compliant electrodes. In the case of DE materials characterized by low mechanical losses, such as silicone, the mechanical hysteresis often turns out to be practically rate-independent in the low frequency range (sub-Hz), whereas rate-dependent hysteretic effects only become relevant at higher deformation rates. Most of the existing literature focuses on describing DE hysteretic losses using viscoelasticity theory. This approach results in relatively simple dynamic models, which are not capable of describing rate-independent hysteretic behaviors. In this work, we propose a control-oriented modeling framework for both rate-dependent and rate-dependent hysteresis occurring in uniaxially loaded DE actuators. To this end, classic thermodinamically-consistent modeling approaches for DEs are combined with a new energy-based Maxwell-Lion formalization of the hysteretic losses. The resulting dynamic model comprises a set of nonlinear ordinary differential equations, and is capable of simultaneously describe geometric dependencies, large deformation nonlinearities, electro-mechanical coupling, and rate-independent and rate-dependent hysteretic effects. To deal with the large number of involved parameters, a novel systematic identification algorithm based on quadratic programming is also proposed. After presenting the theory, the model is validated based on experiments conducted on a silicone-based rolled DE actuator. Its superiority compared to classic DE viscoelastic models is quantitatively assessed.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3