Linear displacement and force characterisation of a 3D-printed flexure-based delta actuator

Author:

Chen XuORCID,Kiziroglou Michail EORCID,Yeatman Eric MORCID

Abstract

Abstract Piezoelectric beams provide a fast, high-force and scalable actuation mechanism that could offer precise motion control to medical microdevices including invasive micromanipulators, catheters and diagnosis tools. Their small displacement range can be addressed by motion amplification mechanisms. In this paper, a piezoelectric-actuated delta-robot actuator is proposed for probe-based confocal laser endomicroscopy (pCLE) microsystems. A prototype is designed and fabricated using three-dimensional (3D) polymer compound printing for a multi-flexure compliant motion amplifier and commercial piezoelectric beams. The flexure material is optimised for maximum linear output motion. The overall robot length is 76 mm and its maximum lateral dimension is 32 mm, with 10 g overall mass, including three piezoelectric beams. An axial motion control range of 0.70 mm and a maximum axial force of 20 mN are demonstrated, at 140 V actuation voltage. The proposed actuator architecture is promising for controlling lens, fibre and micromanipulator components for medical microrobotic applications.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3