Low-energy avionic piezoelectric deicing system

Author:

Jomaa ModarORCID,Lévy Pierre-Etienne,Vasic Dejan,Costa François,Ali Marwan

Abstract

Abstract Piezoelectric actuators are widely used in several applications and are becoming increasingly attractive in aircraft and industrial contexts, mainly when efficiency and economical energy conversion are required. One of these applications is the avionic piezoelectric deicing system. Piezoelectric actuators are considered as a potential solution for developing a low-energy ice protection system for aircraft. This type of system applies vibration to the structure by activating its own resonant frequencies to generate sufficient stress to break the ice and cause it to delaminate from the substrate. The deicing mechanism depends strongly on the chosen excitation mode, whether it is flexural (bending) mode, extension (stretching) mode, or a combination in between, hence affecting the efficiency and effectiveness of the deicing process. In this contribution, a proof of concept of a deicing system utilizing lightweight piezoelectric actuators with minimal power requirement is proposed. Deicing was demonstrated with a power input density of 0.074 W cm−2 and a surface ratio of 0.07 piezoelectric actuators per cm2. First, a numerical method for positioning piezoelectric actuators and choosing the proper resonance mode was validated to assist in the system’s design. Then, the numerical method was used to implement piezoelectric deicing on a more representative structure of an aircraft wing or nacelle. Finally, a converter topology adapted for deicing application was proposed.

Publisher

IOP Publishing

Reference42 articles.

1. A modified neutral point balancing space vector modulation for three-level neutral point clamped converters in high-speed drives;Li;IEEE Trans. Ind. Electron.,2019

2. More electric aircraft: review, challenges, and opportunities for commercial transport aircraft;Sarlioglu;IEEE Trans. Transp. Electrif.,2015

3. Aviation Maintenance Technician Handbook -Airframe;Federal Aviation Administration (FAA),2018

4. Electro-impulse de-icing system for aircraft;Goehner,1987

5. Electro-expulsive de-icing system for aircraft and other applications;Olson R A and Bridgeford M R 2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of the design of a piezoelectric deicing system based on extension resonant modes;Active and Passive Smart Structures and Integrated Systems XVIII;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3