The influence of thermo-electromechanical coupling on the performance of lead-free BNT-PDMS piezoelectric composites

Author:

Akshayveer ORCID,Buroni Federico CORCID,Melnik RoderickORCID,Rodriguez-Tembleque LuisORCID,Saez AndresORCID,Singh SundeepORCID

Abstract

Abstract In recent times, there have been notable advancements in haptic technology, particularly in screens found on mobile phones, laptops, light-emitting diode (LED) screens, and control panels. However, it is essential to note that the progress in high-temperature haptic applications is still in the developmental phase. Due to their complex phase and domain structures, lead-free piezoelectric materials such as Bi 0.5 Na 0.5 TiO 3 (BNT)-based haptic technology behave differently at high temperatures than in ambient conditions. Therefore, it is essential to investigate the aspects of thermal management and thermal stability, as temperature plays a vital role in the phase and domain transition of BNT material. A two-dimensional thermo-electromechanical model has been proposed in this study to analyze the thermal stability of the BNT-PDMS composite by analyzing the impact of temperature on effective electromechanical properties and mechanical and electric field parameters. However, the thermo-electromechanical modelling of the BNT-PDMS composite examines the macroscopic effects of the applied thermal field on mechanical and electric field parameters, as phase change and microdomain dynamics are not considered in this model. This study analyzes the impact of thermo-electromechanical coupling on the performance of the BNT-PDMS composite compared to conventional electromechanical coupling. The results predicted a significant improvement in piezoelectric response compared to electromechanical coupling due to the increased thermoelectric effect in the absence of phase change and microdomain switching for temperature boundary conditions below depolarization temperature ( T d 200 C for pure BNT material).

Funder

Shared Hierarchical Academic Research Computing Network

Ministerio de Ciencia e Innovacion

Alliance de recherche numérique du Canada

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3