Investigation on rheological characteristics of magnetorheological shear thickening fluids mixed with micro CBN abrasive particles

Author:

Qian Cheng,Tian YebingORCID,Fan Zenghua,Sun Zhiguang,Ma Zhen

Abstract

Abstract The novel magnetorheological shear thickening polishing fluids (MRSTPFs) were developed by mixing micro cubic boron nitride (CBN) abrasive particles into traditional magnetorheological shear thickening fluids. MRSTPFs were constructed by uniformly fumed silica and polyethylene glycol as shear thickening fluids, carbonyl iron particles (CIPs) as ferromagnetic phase and CBN particles as abrasive phase. In this work, various MRSTPFs were prepared to explore their rheological characteristics. Sweeps of steady shear rate and dynamic shear frequency were conducted under different magnetic flux densities, respectively. A mathematical model was presented to explain shear rate variation with shear stress. The magnetorheological shear thickening mechanism was well described. The rheological experiment results have revealed that shear thickening effect was still existing in magnetic flux density. However, the increased magnetic flux density played a negative role on the shear thickening effect. Particle size optimization of CIPs was thus essential to maximize the shear thickening effect. On the other hand, with increased shear frequency, the viscoelastic feature of MRSTPFs was converted from linear to non-linear. It was found that the shear yield stress of the MRSTPFs was magnified with the stronger magnetic flux density and larger CIPs size. The investigation of rheological characteristics demonstrated that MRSTPFs could enhance polishing performance, which contributed to developing a high-efficiency and ultra-precision polishing process.

Funder

Key Research and Development Project of Zibo City

Scientific Innovation Project for Young Scientists in Shandong Provincial Universities

Taishan Scholar Special Foundation of Shandong Province

Shandong Provincial Key Research and Development Project, China

Shandong Provincial Natural Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference69 articles.

1. Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids;Barnes;J. Rheol.,1989

2. Review on shear thickening fluids and applications;Ding;Text. Light Ind. Sci. Technol.,2013

3. Application of shear thickening fluids in material development;Zarei;J. Mater. Res. Technol.,2020

4. Polymer conformation near the critical point of a binary mixture;To;Phys. Rev. Lett.,1998

5. Rheological properties of particle suspensions in a polymeric liquid;Choi;Polymer,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3