Improving the comprehensive performance of miniature MR rotary actuators using a lamellar excitation structure

Author:

Liu YingORCID,Zhu TairongORCID,Liao Yunlai,Li Jiaqi,Dai Jun

Abstract

Abstract Miniaturization has increasingly become a crucial prerequisite in various magnetorheological (MR) drive application scenarios. Owing to their high controllability and low response time, MR rotary actuators are developed for numerous feasible actuation solutions. However, the incident low degradation efficiency in the miniaturization limits the application of MR rotary actuators. In addition to torque capacity, structural simplification and easy machinability are also essential for miniaturization. In this study, a novel lamellar excitation structure (LES), which is interleaved with induction coils and ring-shaped iron cores, is proposed to improve the comprehensive performance of a miniature MR rotary actuator. The optimisation of the magnetic field distribution is realised by adopting an equivalent magnetic modelling method. The miniature MR actuator is incorporated into a turbine generator to evaluate the torque capability of the proposed LES-incorporated MR actuator via a kinematic model of the rotating shaft. The LES-incorporated MR rotary actuator demonstrates more favourable deceleration efficiency and torque capacity than conventional MR rotary actuators. The speed reduction per unit power Δn/P can be increased by 500% at most. The torque enhancement ratio-to-volume ratio value of LES is approximately 80 times higher than that of other optimised structures. We believe that this study is significant in improving the comprehensive performance of miniature MR rotary actuators, expanding the applications of MR actuators in miniaturised scenarios.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on the magnetorheological materials and applications;International Journal of Applied Electromagnetics and Mechanics;2024-08-09

2. Anti-sedimentation mechanism of rotary magnetorheological brake integrating multi-helix microstructure;International Journal of Mechanical Sciences;2024-03

3. Magnetorheological Fluid-Based Threshold-Feedback Overload Protection System for the Miniature Turbine Generator;2023 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD);2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3