A novel piezoelectric linear actuator designed by imitating skateboarding movement

Author:

Wang Kuifeng,Li Xuan,Sun Wuxiang,Yang Zhixin,Liang Tianwei,Huang HuORCID

Abstract

Abstract By imitating skateboarding movement, a novel stick–slip piezoelectric linear actuator was proposed in this study. A specific flexure driving foot mechanism (FDFM) was designed to realize the bionic driving function, and theoretical analysis was conducted to calculate the displacement amplification ratio of the FDFM which was further confirmed by finite element simulation. Being different from most of previous design that the slider moved and the driving mechanism was fixed, here the FDFM was integrated with the slider and they moved together along the guide rail. Being similar to that the train moved along the tracks, this kind of layout would facilitate the realization of larger working stroke of the actuator. By experiments, output characteristics of the designed actuator under various driving frequencies and voltages were tested. The results showed that by changing the waveform of driving voltage, both forward and reverse motions with good linearity and stability could be easily achieved. The speed of reverse motion was higher than that of forward motion because of the relatively larger backward motion during forward motion, which was due to the promotion of deformation recovery of the FDFM. Furthermore, the resolution and loading capacity were characterized. The resolutions of forward and reverse motions were 47 nm and 45 nm, respectively, and the actuator could achieve a relatively stable speed when the vertical load was in the range of 0–2 N. This study is expected to provide a new idea for designing piezoelectric actuators with features of high speed, high stability and large working stroke.

Funder

Fundamental Research Funds for the Central Universities

Young Elite Scientists Sponsorship Program by CAS

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3