Magnetofriction—a new concept for shape memory composites

Author:

Hermann SORCID,Muniz N,Ouisse M,Hirsinger L,Chevallier GORCID

Abstract

Abstract This paper introduces a new concept for shape memory based on elastic forces and magnetically induced friction forces in composite materials consisting of magnetoactive elastomers (MAEs). Magnetic attraction forces between two MAEs generate a contact pressure at their interface and the friction allows to maintain stable deformed shapes of the so-called magnetofriction shape memory polymers (MF-SMPs). When the contact is loosened, the friction forces vanish and the elastic forces in each part of the assembly bring the parts back into their initial state where the contact can be established once again. The shape memory effect is studied in three-point bending tests with two stacked MAEs. The global force-displacement relations reveal a hysteretic behavior due to local residual displacements after the test are observed by the help of digital image correlation. The test structure stores up to 25% of the applied displacement. The local contact state (sliding or sticking) is evaluated in different regions of the MF-SMP which gives an insight into the shape memory mechanism magnetofriction. Two methods for the shape-recovery of the MF-SMP by elastic forces in the MAEs are proposed, a manual separation and an air flow at the interface of the MF-SMP, and a comparison of magnetofriction to other shape memory mechanisms is performed.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference30 articles.

1. Materials that move: smart materials, intelligent design;Bengisu,2018

2. Magnetic shape memory microactuators;Kohl;Micromachines,2014

3. Design and validation of a reconfigurable robotic end-effector based on shape memory alloys;Motzki;IEEE/ASME Trans. Mechatronics,2019

4. Small-scale soft-bodied robot with multimodal locomotion;Hu;Nature,2018

5. Inductively heated shape memory polymer for the magnetic actuation of medical devices;Buckley;IEEE Trans. Biomed. Eng.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3