4D printing of shape memory polymers: A comparative study of programming methodologies on various material properties

Author:

Samal Bijaya BikramORCID,Jena Anita,Varshney Shailendra Kumar,Kumar Cheruvu Siva

Abstract

Abstract The emergence of 4D printing has enabled the fabrication of various components that can change in response to external stimuli. Fused filament fabrication is one of the methods for creating shape-changing components using shape-memory polymer (SMP) filament. In order to exhibit the phenomenon of the shape memory effect, programming plays a crucial role. This article discusses two programming concepts, programming during printing (PDP) and programming after printing (PAP), for SMP processed by fused deposition modeling (FDM). We investigated the shape memory properties and other material behavior of PAP and PDP samples considering different thicknesses. We observe that PDP outperforms PAP in terms of shape memory properties based on various characterization tools like Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and field emission-scanning electron microscopy (FE-SEM), which are used for macro and microstructural features. Whereas, PAP shows better mechanical properties based on Nanoindentation analysis. The PDP samples achieved a maximum shape recovery of 99.25%, which is 44% higher than PAP for a 4 mm thick sample, and showed a 28% improvement in recovery compared to PAP for a 2 mm thick sample. Statistical analysis reveals significant differences in the means of recovery ratio and shape memory index between PAP and PDP, and no statistically significant difference is found for the fixation ratio. A shape recovery cycle life measurement has been carried out for a PDP bending actuator, which showed recovery until 140 cycles before complete failure. Finally, a working prototype demonstrating effectiveness of PDP and PAP for programming the same SMP in two different ways has been presented.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3