Design, fabrication and experimental verification of a drag sail based on thermal-driven controllable bi-stable shape memory polymer composite booms

Author:

Ming GuangqingORCID,Chen Siling,Li Bingxun,Li Fengfeng,Liu LiwuORCID,Liu YanjuORCID,Leng JinsongORCID

Abstract

Abstract Deployable drag sails are used for passively deorbiting defunct satellites and other spacecraft. Designing the deployable boom is the main challenge in this technology. We present a bi-stable shape memory polymer composite (Bi-SMPC) boom with high stiffness, a high unfolding/folding ratio, and consistent roll-out deployment. It was designed and fabricated by a strategy of controlling the gradual release of elastic energy stored in a bi-stable composite structure through thermal-driven SMP matrix. Two heating layer strategies were investigated experimentally to determine the optimal driving layer and driving parameters. Based on these parameters, verification tests of a four-stage deployment Bi-SMPC boom were conducted. Meanwhile, a proof-of-concept prototype of a four-stage deployment drag sail based on the Bi-SMPC booms was designed and fabricated. Tests were conducted to verify the effectiveness of the drag sail deployed by the booms. It was found that SMPs can effectively control the deployment of bistable composite structures. The nickel-chromium alloy heating layer offers a more uniform driving temperature field compared to carbon fiber. The drag sail can be deployed successfully under the driving of four Bi-SMPC booms.

Funder

China National Postdoctoral Program for Innovative Talents

Space Science and Scientific Payload Competition Organizing Committee

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference31 articles.

1. Space debris by the numbers;ESA’s Space Debris Office,2022

2. Orbital debris quarterly news;Anz-Meador,2020

3. The kessler syndrome: implications to future space operations;Kessler,2010

4. The top 10 questions for active debris removal;Liou;Mol. Vision,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3