Cyclic and uniaxial tensile properties of superelastic niti shape memory alloy cables

Author:

Zhou YuhaoORCID,Lian Ming,Wang Yankai,Su Mingzhou

Abstract

Abstract This study investigates the impact of various factors, including annealing duration, strain amplitude, cyclic loading, loading rate, and pre-training, on the mechanical properties of Nickel–Titanium shape memory alloy (SMA) cable. The primary focus is on evaluating their recovery ability and energy dissipation capabilities. The tested SMA cable has an outer diameter of 9 mm and a 7 × 7 configuration. The variation of strength, stiffness, residual strain, hysteretic energy, and equivalent viscous damping ratio of SMA cable with the loading cycle is analyzed. Furthermore, the impact of various annealing durations on the tensile strength and elongation of both SMA cables and wires was examined through monotonic tensile tests. The results indicate that the annealing duration considerably affects the superelastic behavior of SMA cables by shifting the stress-strain loops down and widening them. The recovery ability of SMA cable degrades more progressively with increasing loading amplitude and the number of loading cycles. The mechanical properties gradually stabilized after 20 times of constant strain amplitude loading and unloading training. The strain selection for cyclic training should not make the SMA cable in the martensite hardening stage. The recovery ability and peak stress of SMA cable can be significantly improved by pre-training. With the increase of annealing duration, the tensile strength of the SMA cable decreases gradually. Compared with SMA wire, SMA cable has better ductility and robustness and provides sufficient restoring force under large deformation.

Funder

Shaanxi Province Innovation Capability Support Plan - Young Science and Technology Star Project

the Youth Innovation Team Research Project of Shaanxi Provincial Department of Education

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3