Research on the influence of an adhesive layer on the monitoring signal of piezoelectric sensors

Author:

Yu HuiORCID,Guo Chenguang,Yue Haitao,Li Qiang,Dai Weibing,Wang HuiORCID

Abstract

Abstract Electromechanical impedance (EMI) technology, as one of the important methods for analyzing and studying the interaction between sensors and structures, has the characteristics of clear physical meaning and high computational efficiency. However, for complex structures, it is difficult to quantitatively combine the measured impedance signal with the physical parameters of the tested structure. Therefore, establishing an appropriate EMI model is crucial to facilitate the quantitative analysis of structural health monitoring. The impedance models developed so far assume perfect adhesion between PZT and the structure, with displacement compatibility, and ignore the shear lag effect of the adhesive layer. Therefore, this research focuses on analyzing how surface-bonded PZT couples with the structure through the adhesives and conducting a shear layer analysis on two-dimensional (2-D) circular PZT to derive a closed-form solution for shear lag distribution. The shear lag effect is integrated into the 2D impedance formula. The influence of the adhesive layer on bolt loosening monitoring is studied, and it is proven that the modified EMI model can effectively predict the shear lag effect of the adhesive layer. The result of relative error analysis proves that conventional adhesive PZT also exhibits the shear lag phenomenon. The influence of different thicknesses of adhesive layers on sensor sensitivity is studied. The experimental results show that as the thickness of the adhesive layer decreases, the monitoring sensitivity of the sensor increases. Moreover, for slight bolt loosening, the thickness of the adhesive layer can affect the monitoring frequency.

Funder

Key Public Relations Project of Liaoning Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3