Highly sensitive and easy-to-attach wearable sensor for measuring finger force based on curvature changes in an ellipse-shaped finger ring

Author:

Ozaki TakashiORCID,Ohta Norikazu,Fujiyoshi MotohiroORCID

Abstract

Abstract Technologies for digitizing worker actions to enhance human labor tasks, mitigate accidents, and prevent disabling injuries have garnered significant attention. This study focuses on monitoring the force exerted by the fingers and developing a wearable fingertip force sensor based on a simple elliptical ring structure in conjunction with a commercially available resistive bend sensor. Resembling a ring accessory, the sensor is easy to attach and detach, and exhibits high sensitivity, with a resistance change of approximately 9% for a fingertip load of 1 N. Furthermore, to mitigate crosstalk during finger flexion, we propose a combined configuration employing this ring-shaped sensor alongside another sensor designed for measuring and rectifying finger flexion angles. Additionally, we introduce an empirically derived fitting function and a straightforward calibration procedure to extract the function’s parameters. The proposed system achieves an average RMS error of 0.53 N for force estimations of approximately 5 N, even during finger flexion and postural changes.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3