PEDOT/CNT/Bi2Te3 coated porous thermoelectric yarns for textile based wearable thermoelectric generator

Author:

Ding Ding,Wu QianORCID,Gao Yinan,Wang Jinmei,Chen Yixun,Li Qian

Abstract

Abstract Fiber- and yarn-based thermoelectric materials play an essential role in the design of fabric-based flexible thermoelectric generators (FTEGs) which may overcome the wearable difficulties of existing film-based FTEGs. In this study, we used a robust coating method to produce high-performance thermoelectric yarns for wearable applications. An organic/inorganic hybrid coating agent composed of PEDOT:PSS, MWCNT, and Bi2Te3 was used to coat an alkali modified porous polyester yarn. The organic/inorganic hybrid material contributes to the improved thermoelectric properties. The porous modification of polyester yarns improves the wicking property of the fibers and enhances the adhesion stability between yarn substrate and the coating layer. A compromised optimal power factor of 12.3 μWm−1 K−2 could be achieved by 20 wt% Bi2Te3 loading. The corresponding electrical conductivity and Seebeck coefficient were 5526.8 S m−1 and 47.1 μV K−1 at room temperature respectively. A fabric thermoelectric generator with five yarn legs could generate an open circuit voltage of 2.95 mV at a temperature difference of 30 °C, demonstrating its potential application in wearable applications.

Funder

Scientific Research Program Funded by Education Department of Shaanxi Provincial Government

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3