Evaluation of adhesive-free focused high-frequency PVDF copolymer transducers fabricated on spherical cavities

Author:

Habib AORCID,Wagle S,Decharat AORCID,Melandsø F

Abstract

Abstract A layer-by-layer deposition method for fabricating a focused ultrasonic transducer from piezoelectric copolymers has been developed. The fabrication process involves engraving a spherical cavity of 2 mm diameter on polyethyleneimines (PEI) polymer substrate. Surface roughness of the engraved spherical cavity is measured and compared with simulated line scan. Then, the transducer response was investigated by observing the acoustic pulse reflection from the glass plate used as reflector in a focal point. The average central frequency responses were measured to be 48.5 MHz, with a lower and upper −6 dB frequencies of approximately 25 and 76.5 MHz, yielding a bandwidth of 94.2%. A scanning hydrophone system has been employed to determine the focal zone of the transducer and compared with simulation using COMSOL Multiphysics. Two-dimensional surface scanning was performed on the test sample to provide the ultrasonic imaging of the transducer prototype and compare the image with commercial PVDF transducer with a center frequency of (48.5 ± 1) MHz.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3