A coupling model for the cooperative actuation mechanism of thermochemically responsive shape memory polymers

Author:

Wang XiaodongORCID

Abstract

Abstract Thermochemically responsive shape memory polymers (SMPs) have attracted great interest in biomedical applications such as drug-releasing capsules and implantable medical stents, because body temperature can drive their shape recovery behaviors. However, it is difficult to determine the configurational dynamics of polymer segments due to the complexities of environmental stimuli (e.g. solute concentration, temperature change, and solvent diffusion). Besides, the cooperative actuation mechanism behind the thermochemical-driven shape memory effect (SME) is still poorly understood. In this study, we describe the effects of temperature and solvent absorption on conformational rearrangements in SMPs using the size change of cooperative rearrangement region (CRR) derived from the Adam–Gibbs model. The quasi-lattice model is further combined with Fick’s second law to characterize the kinetic diffusion behavior of solvent molecules in the CRR. The dependences of dual- and quadruple-SMEs in amorphous SMPs on immersion time, solution concentration, and programming temperature are quantitatively investigated using the proposed model. The theoretical results are also compared with experimental data and a good agreement is achieved. The proposed model is expected to provide theoretical guidance for understanding the working mechanism of thermochemically responsive SMPs and advancing their engineering applications.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An extended shoving model for dynamic fluctuation of glass transition in amorphous polymer towards cooperative shape-memory effect;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3