Abstract
Abstract
Carbon-based electromechanical actuators, capable of reversible shape changes in response to electrical stimuli, have found many potential utilizations such as robotic artificial muscles, micro-pumps, and sensitive switches. In this work, electroactive materials based on the dibutyl phathalate (DBP) plasticized poly(lactic acid) (PLA) and fullerene (C60) were produced by a simple solvent casting method. The PLA composites exhibited fast and reversible responses under electrical stimulus. The highest storage modulus response was obtained from the 1.0%v/v C60/PLA/DBP at 23.51 × 105 Pa under the 1.5 kV mm−1 electric field. In the bending experiment, the PLA composites bended towards the anode from the attractive force between the negative charges of the induced dipole moments namely the carbonyl groups in PLA and DBP and the π-conjugated electrons of C60 and the positive electrode. The C60/PLA/DBP composite with a small C60 content (0.1%v/v) yielded the maximum bending distance of about 6.0 mm within 10 s and the highest dielectrophoresis force of 1.01 mN at 550 V mm−1. Thus, the electrically responsive PLA composites fabricated here with the short response time and high bending deformation are demonstrated here to be promising biobased materials towards actuator applications.
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献