An enhanced flexoelectric dielectric elastomer actuator with stretchable electret

Author:

Zhang Shuwen,Shao Shubao,Yang Xuxu,Chen PeijianORCID,Ji HuiORCID,Liu Kaiyuan,Wu TonghuiORCID,Shen Shengping,Xu MinglongORCID

Abstract

Abstract Actuation has been applied with dielectric elastomers (DE) in soft robotics and bio-mimic devices due to their ultra-large deformation range, easy patterning, light weight, and they are highly expected for high electro-mechanical efficiency and low stimulating power. Flexoelectricity describes the strain gradient-induced electric polarization, which is strongly related to geometry and deformation ranges. The electro-mechanical coupling effect with flexoelectricity in elastomeric materials are then highly expected. In this work, elastic modulus gradient of a DE actuator is designed for bending motion by flexoelectricity, and electric charge is inserted and immobilized inside the material to further enhance the electro-mechanical capability. Elastic modulus gradient is designed, and electric charges are immobilized to enlarge the electro-mechanical coupling efficiencies of this flexoelectric actuator. The bending angle of the actuator is inversely proportional to the cube of general thickness of actuator, and the immobilized electric charge extensively enlarged the actuation capability. With elastic modulus gradient and electret, the actuating bending angle is enlarged with low stimulating voltage. This work provides an enhanced flexoelectric actuating method with material and mechanical design, and highlights low-voltage actuating approach with piezoelectric-like effect of stretchable electrets.

Funder

Post-doctoral Innovation Talent Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3