A novel piezoelectric-actuated microgripper simultaneously integrated microassembly force, gripping force and jaw-displacement sensors: design, simulation and experimental investigation

Author:

Wang KanORCID,Wang Dai-HuaORCID,Zhao Jian-Yu,Hou Song

Abstract

Abstract For assembling easy-to-deform and easy-to-broken micropart, accurate acquisition of microassembly force and gripping force during microassembly process while ensuring parallel movement of jaws of microgripper is the key to ensure consistency, accuracy and reliability of microassembly without damage. In addition, simultaneously real-time detection of jaw-displacement of microgripper is also a necessary condition for rapid and accurate microassembly. This paper proposes and realizes a principle of a parallelogram compliant mechanism (PCM) based piezoelectric-actuated microgripper, which simultaneously integrates with microassembly force, gripping force and jaw-displacement sensors for the first time and ensures parallel movement of jaws under no-load and gripping micropart. The major structure of proposed microgripper is a monolithic compliant mechanism (MCM) composed of a primary lever compliant mechanism and three-stage PCM in series. Among them, the third-stage PCM is orthogonal to other two PCM in series. MCM transmits the displacement and force from piezoelectric actuator to jaws while transforming microassembly force, gripping force and jaw-displacement into surface strain of single-notch hinges of PCM with three-stage in series. On this basis, simultaneously sensing microassembly force, gripping force and jaw-displacement is realized by monitoring surface strain of single-notch hinges of three-stage PCM. The sensing equations of the microassembly force, gripping force, and jaw-displacement are established, respectively. A microgripper is manufactured, a microgripper system is realized and the integrated sensors are calibrated. The hysteresis characteristics, creep characteristics and time response are tested experimentally. Two examples of microassembly sub-process are simulated and carried out on the constructed microassembly experimental setup. The theoretical and experimental results show that the designed microgripper can simultaneously acquire the microassembly force, gripping force and jaw-displacement with high sensitivity, linearity and resolution in processes of gripping hohlraum and applying microassembly force to hohlraum while ensuring the parallel movement of the gripping jaws when gripping and not gripping micropart.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

LPMT, CAEP

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3