High-velocity micromorphological observation and simulation of magnetorheological gel using programmable magneto-controlled microfluidics system and micro-tube dynamic models

Author:

Yu MiaoORCID,Gan Ruyi,Fu JieORCID,Qi SongORCID,Han Jinyu,Li HaitaoORCID

Abstract

Abstract Application of magnetorheological gel (MRG) is a promising tool for high performance mitigation due to its outstanding energy absorption and dissipation properties. However, the lack of recognition on micromorphological variation for MRG and its magneto-mechanical coupling mechanism limits its extensive application. Herein, combined with the magnetic sensitivity nature of MRG, we develop a magneto-controlled microfluidic system for flexible simulation toward ms-level impact conditions. Microstructural changes of MRG, prepared with solid–liquid composite method, are characterized from variable magnet-field setups and gradual velocities. Experiments reveal that the increasing magnetic flux density can effectively enhance the stability of chains in as-fabricated MRG, while the chains can support excessive velocities up to 4.5 m s−1 before breaking. Meanwhile, under the preset velocity range, the maximum change rates of the average and standard deviation for inclinations are 183.71% and 40.06%, respectively. Successively, an experiment-conducted microdynamic model is developed for numerical simulation of the MRG mechanical behaviors. During that, high-velocity MRG behaviors are explored with a tubular rather than regular flat-structure boundary condition setups, to pursue more trustable results. Simulation readouts meet nicely with those from experiments in revealing the magneto-mechanical coupling mechanism of MRG under multiphysics. The interaction between magnetic force, repulsive force and viscous resistance is mainly illustrated. This work provides a reliable observation basis for micromorphological variation of MRG, also suggests a new method for the mechanism of magneto-mechanical coupling at extreme velocities.

Funder

National Natural Science Foundation of China

GF Special Administrative Region Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3