Abstract
Abstract
This paper presents the design, fabrication, and characterization of a self-foldable Active Origami Reflector Antenna (AORA) of parabolic form. Self-folding of the AORA is enabled by smooth uncreased folds composed of shape memory polymer (SMP) composites. Design methods for origami with smooth folds are applied to determine the shape and fold pattern of a planar sheet that can be folded to reach the parabolic antenna shape. A proof-of-concept prototype of the AORA is fabricated and self-folding of the AORA driven by thermal actuation of the SMP composite folds is demonstrated. The far-field electromagnetic (EM) characteristics of the AORA prototype are investigated through numerical simulations and experimental measurements in an anechoic chamber. A design-of-experiment study is conducted to investigate the effects of the antenna shape parameters on its EM characteristics such as far-field antenna gain and beamwidth, and to compare the performance of the AORA to that of equivalent smooth and faceted parabolic reflectors. Applications of the AORA include high-gain directional radio telescopes and satellite telecommunication.
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献