Abstract
Abstract
The coefficient of thermal expansion (CTE) is an important parameter for the thermophysical properties of materials. Mostly, in aerospace engineering, satellites, hypersonic vehicles, precision instruments and microelectronic packages, numerous thermal deformation structures in severe environment full of drastic temperature changes are required to be controlled precisely. Therefore, the development of adjustable thermal expansion materials is of significance in engineering applications. Based on the Miura-ori structure, this paper adopts materials with respectively diverse CTEs as components to generate thermal stresses mismatch principle and proposes a design method for origami metamaterials with adjustable in situ positive/negative/zero expansion functions. Employing the methods of finite element calculation and deformation analysis, the deformation results of this metamaterial are displayed and discussed. Also, an origami metamaterial with adjustable positive/negative/zero expansion function can be obtained by adjusting the material distribution of the structure. Moreover, the mapping relationship between the folding angle and the geometric parameter of the structure is established. In the light of this design method of tunable CTE metamaterials, additionally, the metamaterial can achieve precise control of thermal deformation and optimize service reliability in extreme environments.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献