Creating 3D printed sensor systems with conductive composites

Author:

Lazarus NathanORCID,Bedair Sarah S

Abstract

Abstract Fused filament fabrication (FFF), the printing of parts through the deposition of layers of melted thermoplastic, is one of the most widely used 3D printing processes due to its ease of use, low cost and accessibility. In this work, integration of 3D printed sensors and interconnect between embedded components into a printed part is demonstrated in an FFF process for the first time. The use of printed active materials for sensing allows interactivity with the end user through mechanisms like touch and temperature. Through dual extrusion in a low cost commercial printer, printing of both a conductive thermoplastic composite and a non-conducting filament are combined to create complex patterns. The piezoresistive and thermally responsive properties of the thermoplastic composite are used to create several different sensor modalities including a piezoresistive strain sensor, a contact switch and a resistive temperature sensor. A heated insertion technique is then developed for embedding of electrical components. The conductive thermoplastic is also used to incorporate a 3D printed circuit board in the same part, including in-line embedding within the body of the part during the printing process. The sensor performance and component embedding properties are characterized, and the process is used to print systems including relaxation oscillators and op-amp interface circuits for sensor monitoring.

Funder

Army Research Laboratory

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3