Theoretical analysis and experimental validation of frequency-moldable electrostatic energy harvesters biased with a high elastic electret film

Author:

Ma XingchenORCID,Yang Xiaoya,Ding Chuan,Zhang Xiaoqing,Dai Ying,He PengfeiORCID

Abstract

Abstract It is an effective strategy to improve the power output of energy harvesters by adjusting resonance frequency of the devices to adapt to complex frequency distribution of vibrations in environments. This paper presents mechanical analysis and experimental validation of a kind of light-weighted, flexible electrostatic vibrational energy harvesters with a customizable resonance frequency range. Such energy harvester consists of a stretchable electret beam, whose high elasticity was achieved by introducing a corrugated structure, an arc-shaped counter electrode, and a light seismic mass. The resonance behavior of the device can be simulated by the corrugated beam with flexible support at both ends. Mechanical analytical modeling allows one to predict resonance frequency of energy harvesters, making the devices potentially interesting for customizable resonance harvesting and broad bandwidth energy harvesting, and thus to satisfy actual application scenarios. The experimental results are in agreement with the theoretical prediction. For a device with an initial size of 15 × 10 × 9 mm3 and a seismic of 0.06 g, by modulating the length of the fluorinated polyethylene propylene electret beam from 15 to 35 mm, a customizable resonance frequency ranging 14–60 Hz, and the normalized output power up to several 100 μW was achieved, demonstrating great superiority.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3