Multiphase lattice metamaterials with enhanced mechanical performance

Author:

Usta FatihORCID,Scarpa FabrizioORCID,Türkmen Halit SORCID,Johnson Peter,Perriman Adam WORCID,Chen YanyuORCID

Abstract

Abstract We describe here the quasi-static crushing behavior of novel classes of multiphase (hybrid) hierarchical lattice metamaterials. The first class is represented by a hybrid architecture combining a hierarchical honeycomb with polyurethane foam filler, while the second is a multiphase structure produced by injecting an alginate hydrogel into the hierarchical voids of the honeycomb metamaterial. Twelve different auxetic (i.e. negative Poisson’s ratio) and non-auxetic metamaterial architectures have been 3D printed and subjected to edgewise compression crushing loading. A parametric numerical analysis has been also performed using validated finite element models to identify best metamaterial architecture configurations. Configurations filled with the hydrogel showed a significant stabilization of the deformation mechanism during large deformation edgewise compression. The use of metamaterials designs with internal slots and round in the ribs also filled by polyurethane rigid semi-reticulated foam feature however significant increases in terms of specific stiffness, mean crushing force, strength and energy absorption. The enhancement is particularly evident for the hybrid lattice metamaterials auxetic configurations.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3