An innovative geotechnical and structural monitoring system based on the use of NSHT

Author:

Di Gennaro LORCID,Damiano EORCID,De Cristofaro MORCID,Netti N,Olivares LORCID,Zona RORCID,Iavazzo L,Coscetta AORCID,Mirabile M,Giarrusso G A,D’Ettore A,Minutolo VORCID

Abstract

Abstract The development of innovative early warning systems (EWS), structural health monitoring (SHM) and structural health monitoring and reinforcement (SHMR) systems is essential to prevent the occurrence of potentially dangerous events on engineering works, buildings and in the natural environment. Their effectiveness can be improved by using new generation sensors able to realize widespread, low-cost monitoring at increasing spatial and temporal resolution. The main aim of the research is, therefore, to develop a versatile strain transducer capable of monitoring elements of different nature such as slopes, buildings and linear infrastructures performing distributed real-time measurements. The paper introduces a new smart hybrid transducer (NSHT), a strain transducer belonging to the distributed optical fiber sensors family, appositely designed to overcome the drawbacks of traditional solutions. An experimental laboratory setup was arranged to test its reliability and a comparison between measurements retrieved by the NSHT and traditional devices were done. The results showed that the NSHT is able to perform strain monitoring with spatial resolution as high as 5 cm and accuracy comparable to that of the traditional devices. Finally, an integrated structural and geotechnical monitoring system architecture based on its use is proposed for the Petacciato site, where a deep-seated landslide affects the historical town and some infrastructures. To realize a single communication line in such a complex monitoring system, where multiple elements have to be monitored, a specific tool was also designed and tested, that allows the exact spatial identification of the various elements under observation. Although on-site validation is needed, these early results are encouraging and demonstrate that the NSHT is a low-cost transducer with great potential and that, looking forward, it can be used to increase the effectiveness of the existing EW, SHM and SHMR Systems. The development of systems involving NSHT also follows the new approach to innovation policy contributing to different points of the 2030 Agenda

Funder

VALERE: “VAnviteLli pEr la RicErca”

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3