Soft robotic fingers with sensorized pre-charged finger pulp

Author:

Zhu Zihui,Yang YangORCID,Yan Shaoyang,Wang Songyan,Xie Yuan,Fu Yili,Li Yunquan,Jiang PeiORCID

Abstract

Abstract Pneumatically driven soft actuators with sensors have been developing rapidly these years. They can perceive external stimulus and be applied to different scenarios. In this study, we present a novel soft robotic finger with sensorized finger pulp based on sealing a flexible fabric piezoresistive film called Velostat into a pre-charged air bag, which can perceive the contact force with an object based on changes in resistance value of the sensor. The soft sensor mimics human finger pulp and deforms passively according to the shape of objects during grasping, so that it can firmly contact with objects and as such improves the gripper’s grasping stability. Moreover, based on force feedback, the actuator can reduce or increase the input pressure to hold the object and control the contact force precisely. The sensor exhibits a sensitivity of up to 0.328 kPa−1 and can measure pressures ranging from 0 to over 10 kPa. The sensor’s measurement range and sensitivity can be pre-adjusted by regulating the pre-charged pressure during fabrication for different grasping tasks. The response/recovery time of the sensor is 80/60 ms on average. Experiments show that the finger with sensorized pulp can be applied for object softness and size detection, object transport minitoring as well as force control grasping. The proposed soft robotic finger has potential for applications in scenarios that require safe contact and closed-loop control.

Funder

National Natural Science Foundation of China

State Key Laboratory of Mechanical Transmission for Advanced Equipment

State Key Laboratory of Mechanical System and Vibration

State Key Laboratory of Robotics and Systems

Publisher

IOP Publishing

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3