Design of a networking bolted joints monitoring method based on PZT

Author:

Yang Yang,Zhang GuangminORCID,Wang YuORCID,Ren Bin,Zhou Haoyu,Xie Andi,Xie Wen

Abstract

Abstract As the failure of bolt connections by corrosion can result in major disasters and cause casualties and property damage, monitoring bolted joints is of great importance. However, current researches on lamb wave based bolted joint monitoring mainly focused on single-input-single-output (SISO) systems, which require a long diagnosis time and numerous transducers. To reduce the number of transducers on monitoring, the multiple-input systems, i.e. multiple-input-multiple-output (MIMO) system and multiple-input-single-output (MISO) system, can be adopted. However, both multiple-input systems are prone to failure due to the interference among the excited waves generated from multiple simultaneously-operated actuators. To remove such interference, an orthogonal variable spreading factor (OVSF) code based bolted joint monitoring method is proposed here. Firstly, instead of using the same detection signal, multiple detection signals generated using OVSF codes are emitted from different input ports. Then, for each considered input port, the corrosion information carrying waveforms are recovered from the acquired signals via timing acquisition and demodulation and utilized to reveal the status of the bolted joints via wavelet packet based analysis. To validate the proposed method, experiments with a MIMO system (i.e. three-input-two-output system) and a MISO system (i.e. six-input-single-output system) were conducted to simultaneously reveal six given bolted joint corrosion status in this research. Since the proposed method effectively suppresses the interference, the MIMO/MISO bolted joint monitoring system can present a performance similar to that of the SISO monitoring system but require fewer transducers.

Funder

National Natural Science Foundation of China

Guangdong Dongguan Joint Fund

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference33 articles.

1. Review of bolted connection monitoring;Wang;Int. J. Distrib. Sens. Netw.,2013

2. The performance of three electromechanical impedance damage indicators on structural element with bolted joints;Wandowski,2015

3. Assessing the load carrying capacity of concrete anchor bolts using non-destructive tests and artificial multilayer neural network;Saleem;J. Build. Eng.,2020

4. Non-destructive testing on anchorage quality of hollow grouted rock bolt for application in tunneling, lessons learned from their uses in coal mines;Wu;Tunn. Undergr. Space Technol.,2019

5. Tapping and listening: a new approach to bolt looseness monitoring;Kong;Smart Mater. Struct.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3