Double-speed piezoelectric–electromagnetic hybrid energy harvester driven by cross-moving magnets

Author:

Shi GeORCID,Hu Xiangzhan,Xia Yinshui,Jia Shengyao,Wang Xiudeng,Xia Huakang,Sun Yanwei,Shi Mang,Wang Binrui

Abstract

Abstract Energy harvesters have gained popularity as green energy devices that transform mechanical energy from the environment into electricity. However, traditional piezoelectric energy harvesters are limited by narrowband response, and the output capability of electromagnetic energy harvesters is dependent on the rate of magnetic field changes on the coil, which is constrained by the device’s structure. To address these issues, this paper presents a hybrid energy harvester (HEH) that combines coils and arc magnets, forming an electromagnetic component (EMEH). Additionally, it incorporates a piezoelectric cantilever beam (PECB) as a piezoelectric component (PEH). Unlike traditional electromagnetic energy harvesters, this design utilizes two arc magnets to drive the rotating brackets, thereby achieving the opposite movement of the coil and magnet. This increases the relative velocity and consequently enhances the rate of magnetic field change on the coil. Simultaneously, it achieves frequency up-conversion by inducing vibration in the PECB through magnetic force. Under an external excitation of 5.5 Hz, the PEH achieves a maximum power of 0.362 mW at a load resistance of 330 kΩ, while the EMEH with 1200 turns of coil attains a maximum power of 8.74 mW at a load resistance of 110 Ω. The power density of the PEH reaches 94.96 μW cm−3. These results highlight the significant potential of the proposed energy harvester for powering low-power devices.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3