Theoretical switch model of novel asymmetric magnetorheological damper for shock and vibration application

Author:

Liang HuijunORCID,Fu JieORCID,Li Wei,Wang Yongsheng,Luo Lei,Qi SongORCID,Yu MiaoORCID

Abstract

Abstract This study proposed a novel asymmetric conical flow channel magnetorheological damper (CFC-MRD) for all-terrain vehicles (ATVs) to handle complex excitations with coexisting shocks and vibrations. CFC-MRD produces adjustable damping forces by utilizing magnetically controlled properties and achieves asymmetric force output (moderate compression force and strong extension force) with conical flow channels. This design could effectively absorb and dissipate energy. The paper first illustrates the structure and asymmetric principle of CFC-MRD. Then, the mechanism of asymmetric force generation in a non-parallel flat plate is derived, and utilizes the hydrodynamic theory to derive the pressure difference of Bingham fluid between the non-parallel plates. Considering the coexistence of vibration and shock, the study proposes a theoretical switch model that distinguishes between low and high velocity states based on the Reynolds number. Finally, the validity of the model is verified by experiments, and the results show that the CFC-MRD achieves the desired asymmetric force output. The asymmetric force ratio rises with higher excitation speed and drops with increased drive current. At a speed of 1 m s−1 without any applied current, the maximum asymmetric force reaches 1.21. The small peak error, averaging only 2.57%, between experimental and theoretical results affirms the accuracy of the proposed switch model.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3