Buckling-driven piezoelectric defect-induced energy localization and harvesting using a Rubik’s cube-inspired phononic crystal structure

Author:

Cao Dong-XingORCID,Li Sha-Sha,Guo Xiang-YingORCID,Chen Xu-Min,Lai Siu-KaiORCID

Abstract

Abstract Wireless sensor networks that enable advanced internet of things (IoT) applications have experienced significant development. However, low-power electronics are limited by battery lifetime. Energy harvesting presents a solution for self-powered technologies. Vibration-based energy harvesting technology is one of the effective approaches to convert ambient mechanical energy into electrical energy. Various dynamic oscillating systems have been proposed to investigate the effectiveness of energizing low-power electronic sensor devices for supporting various IoT applications across engineering disciplines. Phononic crystal structures have been implemented in vibrational energy harvesters due to their unique bandgap and wave propagation properties. This work proposes a Rubik’s cube-inspired defective-state locally resonant three-dimensional (3D) phononic crystal with a 5 × 5 × 5 perfect supercell that contains 3D piezoelectric energy harvesting units. The advantage of defect-induced energy localization is utilized to harness vibrational energy. The 3D piezoelectric energy harvesting units are constructed by the buckling-driven assembling principle. Adapting to the low-frequency and broadband characteristics of ambient vibration sources, soft silicone gel is used to encapsulate the buckled 3D piezoelectric units, which are embedded in the 3D cubic phononic crystal to assemble an entire system. The energy harvesting performance of various defective layouts and their defect modes is discussed. The results demonstrate that the harvester functions well under multidirectional, multimodal, and low-frequency conditions. The proposed methodology also offers a new perspective on vibrational energy harvesters for defective phononic crystals with superior working performance.

Funder

Innovation and Technology Commission

Project of Strategic Importance of The Hong Kong Polytechnic University

National Natural Science Foundation of China

Seed Foundation of Beijing University of Technology for International Research Cooperation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3