Novel high efficiency deterministic polishing method using magnetorheological elastomer

Author:

Chen Yuchuan,Huang Wen,Zhang Yunfei,Li Kailong,Fan Wei,Zheng Yongcheng,Qi SongORCID,Yu MiaoORCID

Abstract

Abstract Magnetorheological elastomer (MRE) is a kind of intelligent material with excellent magnetic-induced rheological features. It has been widely applied in fields like vibration control, soft robots, smart sensing, electromagnetic shielding, etc. In theory, MREs have flexible and controllable rheological properties, which make it possible to become a high efficient deterministic polishing medium as that of magnetorheological fluids. In this paper, a novel polishing method using MRE material as the deterministic polishing tool is proposed. This method utilizes the magnetorheological effect of MRE to generate stronger instantaneous shear force which has advantages over that of traditional magnetorheological fluid finishing. First, a new MRE material suitable for magnetorheological principle finishing is prepared, and the mechanical properties of MRE are characterized. In order to make sure that the polishing fluid can run into the polishing zone and improve the polished surface quality, special pattern and micro structures are well designed and engineered on the MRE surface. Compression and wear property are investigated to understand the nature of this novel tool. Then, a mathematic model considering the contribution weights of shear stress and normal pressure of MRE polishing is established and discussed. Finally, polishing experiments are carried out on an optical glass, and a stable removal function is obtained. Results demonstrate that this novel MRE polishing can achieve high efficiency and determinability in optical manufacturing, which proves the feasibility of the novel polishing method using MRE tool.

Funder

National Key Research and Development Program of China

the Science Challenge Project

Funding Support by Laboratory of Precision Manufacturing Technology, CAEP

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3