Hybrid optimization schemes for solving the piezoresistive inversion problem in self-sensing materials

Author:

Hassan HashimORCID,Crossley William AORCID,Tallman Tyler NORCID

Abstract

Abstract Materials with electrically conductive nanofillers have the ability to ‘sense’ changes to their mechanical state. When these materials are deformed, the embedded nanofiller networks are disturbed causing a measurable change in the electrical conductivity of the material. This self-sensing property, known as piezoresistivity, has been leveraged in numerous engineering venues. Although this property has been thoroughly explored, prevailing self-sensing techniques provide little-to-no information about the underlying mechanical state of the material, such as the displacement and strain. This information must be indirectly obtained from the conductivity change. This limitation exists because obtaining mechanics from conductivity is an under-determined inverse problem with many possible mathematically feasible solutions. Previous work in this area used metaheuristic algorithms and imposed mechanics-based constraints to solve the piezoresistive inversion problem. Although this approach was successful, it was computationally inefficient due to the stochastic search process and the need to perform multiple searches to find a converged solution. To overcome this limitation, we herein propose a hybrid optimization scheme for solving the piezoresistive inversion problem. This scheme is implemented in two steps. In the first step, a metaheuristic algorithm performs a single search for a suitable solution to the inverse problem. In the second step, a gradient descent algorithm searches for the final solution using the solution from the previous step as the starting point. We explore different norms for the fitness function of the metaheuristic search and demonstrate using experimental data that the proposed hybrid optimization scheme can accurately and efficiently calculate displacements and strains from conductivity changes. This exploration significantly advances the state of the art by enabling computationally efficient and highly accurate predictions of full-field mechanical condition in self-sensing materials for the first time, thereby paving the way for greater use of these principles in practice.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3