3D constitutive modeling of electro-magneto-visco-hyperelastic elastomers: a semi-analytical solution for cylinders under large torsion–extension deformation

Author:

Yarali E,Baniasadi M,Bodaghi MORCID,Baghani MORCID

Abstract

Abstract The rise of a new class of smart materials known as electro-magnetorheological elastomers (EMREs) requires comprehensive understanding of their electro-magneto-visco-hyperelastic behaviors. The aim of this paper is to develop a generalized three-dimensional (3D) continuum-based framework of the electro-magneto-visco-hyperelastic behaviors of EMREs. The finite strain model is established based on the linear viscoelasticity theory and non-linear electro-magneto-elastic framework. As EMRE devices can be used in a cylindrical shape undergoing shear and normal stresses in many engineering applications like artificial muscles, a boundary-value problem simulating torsion–extension deformations of EMRE cylinders is developed in the finite strain regime and solved semi-analytically. The behaviors of EMRE cylinders under different loading conditions such as purely mechanical loading, purely electric loading as well as full coupling between mechanical, electric and magnetic loading are studied in detail. Influence of different parameters such as electric field, magnetic field, applied strain (-rate) and their coupling on the induced moment and axial force of the EMRE cylinder as well as its relaxation and creep under torsion–extension loading is also examined. It is shown that EMREs have adaptive capability and great potential in applications where the stiffness needs to be controllable. Due to simplicity and accuracy, the model is expected to be used in the future studies dealing with the analysis of EMREs in particular cylinders under torsion–extension developments like 4D printing of artificial EMRE-based cylindrical muscles.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3