In-field strain and temperature measurements in a (RE)Ba2Cu3O7−x coil via Rayleigh-backscattering interrogated optical fibers

Author:

Scurti FORCID,Velez C,Kelly A,Ishmael S,Schwartz J

Abstract

Abstract (RE)Ba2Cu3O7-x (REBCO) conductors have overcome technical challenges related to manufacturing quality, length homogeneity, scale-up of piece-length, and joints. There is one remaining technical challenge, however, which is common to all high temperature superconductors and lies in effective detection of failure to prevent material degradation. An innovative technique based on optical fibers interrogated by Rayleigh backscattering has been shown to have advantages over voltage taps at detecting incipient faults. Prior work has experimentally demonstrated the technique in several implementation scenarios, including direct integration of optical fibers into superconducting conductors and cables to create a class of ‘SMART’ conductors and cables that are able to monitor their own health. In this paper, the magnet monitoring technique based on Rayleigh backscattering interrogated optical fibers has been experimentally studied in a model coil subject to external magnetic field, where different fiber integration methods are used to increase selectivity of the fiber sensor to temperature. Results show that the spectral shift displays different features during strain and thermal transients. The implications of the results in terms of potential and limitations of each sensor as well as strain-temperature decoupling are discussed.

Funder

U.S. Department of Energy Office of Science SBIR/STTR Program

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quench Detection and Temperature Measurement With Fiber Optic Sensors;IEEE Transactions on Applied Superconductivity;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3