The effect of fabric properties on the performance of a textile based ferroelectret generator toward human body energy harvesting

Author:

Shi JunjieORCID,Beeby Steve P

Abstract

Abstract This paper reports the lamination of two thin fluorinated ethylene propylene (FEP) films onto the back and front surfaces of a conventional textile forming a sandwich structure which creates a textile-based ferroelectret. In this work, we study the effect of the physical properties and dimensions of the textile on the piezoelectric properties and energy harvesting performance of the ferroelectret. Five different fabrics with different thicknesses and Young’s modulus were used to form textile based ferroelectret harvesters. Thinner textiles result in increased piezoelectric properties of the fabricated FEP textile ferroelectret. The highest measured stable maximum piezoelectric coefficient d33 of 987 pC N−1 was achieved by the thinnest silk textile FEP ferroelectret. The energy harvester based on the FEP-silk textile ferroelectret generates a peak output power density of 2.26 µW cm−2. The textile ferroelectret can charge a 10 µF capacitor used to store the harvested energy to 3.2 V in 40 s. This corresponds to an average output power of 1.07 µW when subjected to compressive pressures of 30 kPa applied at a frequency of 1 Hz with a 90 MΩ loading resistance.

Funder

Royal Academy of Engineering

engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Advances in Ferroelectret Fabrication, Performance Optimization, and Applications;Advanced Materials;2024-05-28

2. Heat- and energy-harvesting technology for smart textiles and applications;Smart Textiles from Natural Resources;2024

3. Magnetostrictive wires-epoxy resin composite structures for human motion energy harvesting;Smart Materials and Structures;2023-12-15

4. Removing the Reliance on Batteries: Energy Harvesting Based Power Supplies for Rail and Wearable Applications;2023 IEEE 22nd International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS);2023-12-11

5. Ferroelectret nanogenerators for the development of bioengineering systems;Cell Reports Physical Science;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3