Soft modular pipe robot inspired by earthworm for adaptive pipeline internal structure

Author:

Jiang JingORCID,Zhang FengORCID,Wang LeiORCID

Abstract

Abstract The inspection, maintenance, and repair of complex pipelines have motivated the development of soft robots with highly flexible and good adaptability. In this study, inspired by the unique locomotion of earthworms, we developed a type of smart material–driven soft modular pipe robot capable of stable manipulation and performing in unstructured pipe environments, which easily assembles into more complex configurations with multiple modules for practical use. Our prototype robot consists of three soft telescopic modules connected in series with flexible bellows and a tail friction mechanism, where the modules adopt a high-energy density shape memory alloy spring as an actuator. Based on analyzing the peristaltic process of the module inside the pipe, it is ensured that the geometric constraint performance of the braided mesh pipe is reasonably matched with the thermomechanical performance of the SMA spring to realize the alternating conversion of anchoring and releasing. By optimizing the overall robotic structure, it is demonstrated that our robot achieves robust crawling in horizontal, vertical, variable-diameter, and curved pipes, wet pipes with the partial presence of water, and pipes with complex cavities through simple open-loop on/off control.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3